Quantum Isometry Group for Spectral Triples with Real Structure
نویسنده
چکیده
Given a spectral triple of compact type with a real structure in the sense of [Da̧browski L., J. Geom. Phys. 56 (2006), 86–107] (which is a modification of Connes’ original definition to accommodate examples coming from quantum group theory) and references therein, we prove that there is always a universal object in the category of compact quantum group acting by orientation preserving isometries (in the sense of [Bhowmick J., Goswami D., J. Funct. Anal. 257 (2009), 2530–2572]) and also preserving the real structure of the spectral triple. This gives a natural definition of quantum isometry group in the context of real spectral triples without fixing a choice of ‘volume form’ as in [Bhowmick J., Goswami D., J. Funct. Anal. 257 (2009), 2530–2572].
منابع مشابه
Quantum Group of Isometries in Classical and Noncommutative Geometry
We formulate a quantum generalization of the notion of the group of Riemannian isometries for a compact Riemannian manifold, by introducing a natural notion of smooth and isometric action by a compact quantum group on a classical or noncommutative manifold described by spectral triples, and then proving the existence of a universal object (called the quantum isometry group) in the category of c...
متن کاملSpectral triples of weighted groups
We study spectral triples on (weighted) groups and consider functors between the categories of weighted groups and spectral triples. We study the properties of weights and the corresponding functor for spectral triples coming from discrete weighted groups.
متن کاملReal Spectral Triples and Charge Conjugation
This is an elaboration of a talk held at the workshop on the standard model of particle physics in Hesselberg, March 1999. You may think of a real structure on a spectral triple as a generalisation of the charge conjugation operator acting on spinors over an even dimensional manifold. The charge conjugation operator is, in fact, an important example and will be treated in detail below. The foll...
متن کاملQuantum Dimension and Quantum Projective Spaces
We show that the family of spectral triples for quantum projective spaces introduced by D’Andrea and Da̧browski, which have spectral dimension equal to zero, can be reconsidered as modular spectral triples by taking into account the action of the element K2ρ or its inverse. The spectral dimension computed in this sense coincides with the dimension of the classical projective spaces. The connecti...
متن کاملEquivariant spectral triples on the quantum SU(2) group
We characterize all equivariant odd spectral triples on the quantum SU(2) group having a nontrivial Chern character. It is shown that the dimension of an equivariant spectral triple is at least three, and there does exist a 3-summable equivariant spectral triple. We also show that given any odd spectral triple, there is an odd equivariant spectral triple that induces the same element in K. AMS ...
متن کامل